Saturday, July 13, 2019

computational chemistry - Striking examples where Kohn-Sham orbitals clearly have no physical meaning


In Density Functional Theory courses, one is often reminded that Kohn-Sham orbitals are often said to bear no any physical meaning. They only represent a noninteracting reference system which has the same electron density as the real interacting system.



That being said, there are plenty of studies in that field’s literature that given KS orbitals a physical interpretation, often after a disclaimer similar to what I said above. To give only two examples, KS orbitals of H2O[1] and CO2 closely resemble the well-known molecular orbitals.


Thus, I wonder: What good (by virtue of being intuitive, striking or famous) examples can one give as a warning of interpreting the KS orbitals resulting from a DFT calculation?




[1] “What Do the Kohn-Sham Orbitals and Eigenvalues Mean?”, R. Stowasser and R. Hoffmann, J. Am. Chem. Soc. 1999, 121, 3414–3420.



Answer



When people say that Kohn-Sham orbitals bear no physical meaning, they mean it in the sense that nobody has proved mathematically that they mean anything. However, it has been empirically observed that many times, Kohn-Sham orbitals often do look very much like Hartree-Fock orbitals, which do have accepted physical interpretations in molecular orbital theory. In fact, the reference in the OP lends evidence to precisely this latter viewpoint.


To say that orbitals are "good" or "bad" is not really that meaningful in the first place. A basic fact that can be found in any electronic structure textbook is that in theories that use determinantal wavefunctions such as Hartree-Fock theory or Kohn-Sham DFT, the occupied orbitals form an invariant subspace in that any (unitary) rotation can be applied to the collection of occupied orbitals while leaving the overall density matrix unchanged. Since any observable you would care to construct is a functional of the density matrix in SCF theories, this means that individuals orbitals themselves aren't physical observables, and therefore interpretations of any orbitals should always be undertaken with caution.


Even the premise of this question is not quite true. The energies of Kohn-Sham orbitals are known to correspond to ionization energies and electron affinities of the true electronic system due to Janak's theorem, which is the DFT analogue of Koopmans' theorem. It would be exceedingly strange if the eigenvalues were meaningful while their corresponding eigenvectors were completely meaningless.


No comments:

Post a Comment

digital communications - Understanding the Matched Filter

I have a question about matched filtering. Does the matched filter maximise the SNR at the moment of decision only? As far as I understand, ...