Thursday, May 16, 2019

spectroscopy - How do I determine the molecular vibrations of linear molecules?


I know how to do it for just about every other point group, but the $D_{\infty \mathrm h}$ and $C_{\infty \mathrm v}$ character tables aren't as straightforward. In particular, I'm interested in the vibrational modes of carbon dioxide, $\ce{CO2}$.



$$\begin{array}{c|cccc|cc} \hline C_{\infty\mathrm{v}} & E & 2C_\infty^\phi & \cdots & \infty\sigma_\mathrm{v} & & \\ \hline \mathrm{A_1} \equiv \Sigma^+ & 1 & 1 & \cdots & 1 & z & x^2 + y^2, z^2 \\ \mathrm{A_2} \equiv \Sigma^- & 1 & 1 & \cdots & -1 & R_z & \\ \mathrm{E_1} \equiv \Pi & 2 & 2 \cos\phi & \cdots & 0 & (x,y), (R_x,R_y) & (xz,yz) \\ \mathrm{E_2} \equiv \Delta & 2 & 2 \cos 2\phi & \cdots & 0 & & (x^2-y^2,xy) \\ \mathrm{E_3} \equiv \Phi & 2 & 2 \cos 3\phi & \cdots & 0 & & \\ \vdots & \vdots & \vdots & \ddots & \vdots & & \\ \hline \end{array}$$


$\,$


$$\small \begin{array}{c|cccccccc|cc} \hline D_{\infty\mathrm{h}} & E & 2C_\infty^\phi & \cdots & \infty\sigma_\mathrm{v} & i & 2S_\infty^\phi & \cdots & \infty C_2 & \\ \hline \mathrm{A_{1g}} \equiv \Sigma^+_{\mathrm{g}} & 1 & 1 & \cdots & 1 & 1 & 1 & \cdots & 1 & & x^2 + y^2, z^2 \\ \mathrm{A_{2g}} \equiv \Sigma^-_{\mathrm{g}} & 1 & 1 & \cdots & -1 & 1 & 1 & \cdots & -1 & R_z & \\ \mathrm{E_{1g}} \equiv \Pi_{\mathrm{g}} & 2 & 2\cos\phi & \cdots & 0 & 2 & -2\cos\phi & \cdots & 0 & (R_x,R_y) & (xz,yz) \\ \mathrm{E_{2g}} \equiv \Delta_{\mathrm{g}} & 2 & 2\cos 2\phi & \cdots & 0 & 2 & 2\cos 2\phi & \cdots & 0 & & (x^2-y^2,xy) \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & & \\ \mathrm{A_{1u}} \equiv \Sigma^+_{\mathrm{u}} & 1 & 1 & \cdots & 1 & -1 & -1 & \cdots & -1 & z & \\ \mathrm{A_{2u}} \equiv \Sigma^-_{\mathrm{u}} & 1 & 1 & \cdots & -1 & -1 & -1 & \cdots & 1 & & \\ \mathrm{E_{1u}} \equiv \Pi_{\mathrm{u}} & 2 & 2\cos\phi & \cdots & 0 & -2 & 2\cos\phi & \cdots & 0 & (x,y) & \\ \mathrm{E_{2u}} \equiv \Delta_{\mathrm{u}} & 2 & 2\cos 2\phi & \cdots & 0 & -2 & -2\cos 2\phi & \cdots & 0 & & \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & & \\ \hline \end{array}$$




No comments:

Post a Comment

digital communications - Understanding the Matched Filter

I have a question about matched filtering. Does the matched filter maximise the SNR at the moment of decision only? As far as I understand, ...